熵与音乐

This browser does not support PDFs. Please download the PDF to view it: Download PDF.

Reference

  1. Bigerelle, M., & Iost, A. (2000). Fractal dimension and classification of music. chaos solitons & fractals, 11(14), 2179-2192. doi:10.1016/S0960-0779(99)00137-X

  2. Bulmer, M. (2000). Music from fractal noise. Paper presented at the Mathematics 2000 Festival, Melbourne, Vic., Australia. https://maths.uq.edu.au/~mrb/research/papers/fractalmusic.pdf

  3. Cambouropoulos, E. (1997). Musical rhythm: A formal model for determining local boundaries, accents and metre in a melodic surface. Music, Gestalt, and Computing: Studies in Cognitive and Systematic Musicology, 277-293.

  4. Demaine, E. D., Gomez-Martin, F., Meijer, H., Rappaport, D., Taslakian, P., Toussaint, G. T., . . . Wood, D. R. (2009). The distance geometry of music. Computational Geometry, 42(5), 429-454.

  5. González-Espinoza, A., Martínez-Mekler, G., & Lacasa, L. (2020). Arrow of time across five centuries of classical music. 2(3). doi:10.1103/PHYSREVRESEARCH.2.033166

  6. Herff, S. A., Olsen, K. N., Prince, J., & Dean, R. T. (2018). Interference in memory for pitch-only and rhythm-only sequences. Musicae Scientiae, 22(3), 344-361. doi:10.1177/1029864917695654

  7. Jacoby, N., & McDermott, J. H. (2017). Integer Ratio Priors on Musical Rhythm Revealed Cross-culturally by Iterated Reproduction. Curr Biol, 27(3), 359-370. doi:10.1016/j.cub.2016.12.031

  8. Levitin, D. J., Chordia, P., & Menon, V. (2012). Musical rhythm spectra from Bach to Joplin obey a 1/f power law. Proc Natl Acad Sci U S A, 109(10), 3716-3720. doi:10.1073/pnas.1113828109

  9. Mehr, S. A., Singh, M., Knox, D., Ketter, D. M., Pickens-Jones, D., Atwood, S., . . . Glowacki, L. (2019). Universality and diversity in human song. Science, 366(6468). doi:10.1126/science.aax0868

  10. Niklasson, G. A., & Niklasson, M. H. (2015). Non-Gaussian distributions of melodic intervals in music: The Levy-stable approximation. Epl, 112(4). doi:Artn 40003

  11. 10.1209/0295-5075/112/40003

  12. Niklasson, M. H., & Niklasson, G. A. (2020). The fractal dimension of music: Melodic contours and time series of pitch.

  13. Ornes, S. (2014). Science and Culture: Hunting fractals in the music of J. S. Bach. Proceedings of the National Academy of Sciences of the United States of America, 111(29), 10393-10393. doi:10.1073/PNAS.1410330111

  14. Peretz, S. H. (1997). Recognition of music in long-term memory: Are melodic and temporal patterns equal partners? Memory & Cognition.

  15. Quinn, I. (2001). Listening to Similarity Relations. Perspectives of New Music, 39(2), 108-158. Retrieved from http://www.jstor.org/stable/833566

  16. Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, P. J., . . . Sabeti, P. C. (2011). Detecting novel associations in large data sets. Science, 334(6062), 1518-1524. doi:10.1126/science.1205438

  17. Schellenberg, E. G., Krysciak, A. M., & Campbell, R. J. (2000). Perceiving Emotion in Melody: Interactive Effects of Pitch and Rhythm. Music Perception An Interdisciplinary Journal, 18(2), 155-171.

  18. Scherbaum, F., Mzhavanadze, N., Arom, S., Rosenzweig, S., & Müller, M. (2020). Tonal Organization of the Erkomaishvili Dataset: Pitches, Scales, Melodies and Harmonies.

  19. Su, Z.-Y., & Wu, T. (2007). Music walk, fractal geometry in music. physica a statistical mechanics and its applications, 380, 418-428. doi:10.1016/J.PHYSA.2007.02.079

  20. Toussaint, G. (2010). Computational geometric aspects of rhythm, melody, and voice-leading. Computational Geometry-Theory and Applications, 43(1), 2-22. doi:10.1016/j.comgeo.2007.01.003

  21. Useche, J., & Hurtado, R. (2019). Melodies as Maximally Disordered Systems under Macroscopic Constraints with Musical Meaning. Entropy, 21(5). doi:ARTN 532

  22. 10.3390/e21050532

  23. Voss, R., & Clarke, J. (1975). 1/f noise in speech and music. Nature, 258, 317-318.

  24. Voss, R. F. (1989). Random fractals: self-affinity in noise, music, mountains, and clouds. physica d nonlinear phenomena, 38(1), 362-371. doi:10.1016/0167-2789(89)90220-0

  25. Voss, R. F., & Clarke, J. (1978). ’’1/f noise’’in music: Music from 1/f noise. The Journal of the Acoustical Society of America, 63(1), 258-263.

  26. 姜万通. (2000). 《吐鲁番的葡萄熟了》旋律“分形结构”分析──为纪念施光南逝世10周年而作. 乐府新声(沈阳音乐学院学报)(03), 15-19.

  27. 姜万通. (2005). 混沌・分形与音乐:音乐作品的混沌本质与分形研究初探: 混沌・分形与音乐:音乐作品的混沌本质与分形研究初探.